Time

Bunch structure

Time Scales

Instrumentation

Bunch Length σ_{τ}

Source Type

Storage Rings 10's of picoseconds

 $\sigma_{ au}$

UV SASE FEL* < 1 ps

X-ray FEL* 10's of femtoseconds

Energy recovery 100 fs - few ps linacs*

 Linac-based sources generate very non-Gaussian bunches

Equilibrium Zero-current bunch length - storage ring

$$\sigma_{\tau} = \{ 2 \pi \alpha h E / \omega_{RF}^2 \cos \phi_s e V_{RF} \}^{1/2} \sigma_E$$

 α = momentum compaction

 $h = harmonic number = f_{rf} / f_{rev}$

E = Energy

 $\omega_{\rm RF} = 2 \pi f_{\rm rf}$

 ϕ_s = Synchronous phase

 $V_{RF} = RF$ voltage

 $\sigma_E = \text{Energy spread},$

(proportional to energy)

APS Bunch Length Data

Time Scales for Modern Storage Ring - Based Light Sources

	APS	SPEAR-3	SRC - Aladdin	NSLS UV ring
Beam Energy	7 GeV	3 GeV	1.0 GeV	750 MeV
RF Period	2.84 ns	2.10 ns	19.8 ns	18.9 ns
Circumference L	1104 meters	234 meters	88.9 meters	51 meters
Revolution period T _{rev}	3683 ns	781 ns	297 ns	170 ns
Harmonic number h	$1296 = 2^4 3^4$	372	15	9
RF Frequency f _{RF}	352 MHz	476 MHz	50.582 MHz	53 MHz
Revolution freq. f _{rev}	271 kHz	1.28 MHz	3.37 MHz	5.88 MHz
Bunch Length σ_{τ}	35 ps	19 ps	479 ps	162 - 500 ps

$$f_{rev} = c / L$$

$$T_{rev} = L/c$$

$$c = 2.9979e8 \text{ m/s}$$

$$= f_{RF} / f_{rev}$$

RF Period =
$$1/f_{RF}$$

= Minimum bunch spacing

APS 24 -1 Singlets Fill Pattern

Revolution period = 3.68 microseconds = 1296 buckets

Comparison of Time Scales for Different Light Source Technologies

	APS	LCLS	TESLA	ERL
Beam Energy	7 GeV	15 Gev	25 GeV	5.3 GeV
RF Period	2841 ps	350 ps	769 ps	769 ps
Pulse Rep. Period	11 - 154 ns	8.3 milliseconds	17.7 μs**	769 ps
Bunch Length FWHM	73 ps	230 femtosec.	90 femtosec.	300 femtosec.
RF Frequency	352 MHz	2856 MHz	1300 MHz*	1300 MHz*
Pulse Rep. Frequency	6.5 - 88 MHz	120 Hz	56575	1300 MHz
Charge / pulse	14 nC	1 nC	1 nC	8 - 77 pC
Average Current	100 mA	72 nanoAmps	63 microAmps	10 - 100 mA

http://erl.chess.cornell.edu/papers/ERL_Study.pdf

^{*} Superconducting RF

^{** 11315} buckets * 93 nsec * 1 nC Bunch Trains * 5 Hz

Oscilloscopes

Specifications

Analog Bandwidth up to > 6 GHz Sample Rate up to 20 GS / sec Sub-ps jitter, rise time Common PC / windows operating systems Most often use 8-bit resolution Some units provide convenient interface to network.

Cavity filters with 6 bunches @ 1.67 ma/bunch sum input

MODEL VTR8014

Transient Digitizers

Trade off speed for resolution - 14 vs. 8 bits for typical fast oscilloscope

Usually requires additional digital signal processor plus competent programmer

Special-purpose digital radios available with a lot of on-board firmware.

EIGHT CHANNEL, 80 MHZ, 14 BIT "VME" ANALOG DIGITIZER WITH OSCILLOSCOPE CHARACTERISTICS

FEATURES:

- 1, 2, 4 OR 8 INDIVIDUAL CHANNELS
- 80 MHZ CLOCK SPEED
- 14 BIT RESOLUTION PLUS SIGNAL AVERAGING FOR IMPROVED SNR
- "OSCILLOSCOPE" TYPE INPUTS FEATURING:
 - HIGH INPUT IMPEDANCE, 10 MΩ's
 - FULL SCALE OFFSET CONTROL
 - SINGLE ENDED OR DIFFERENTIAL INPUTS
 - WIDE INPUT BANDWIDTH FOR GOOD WAVEFORM TRACKING
- 256K SAMPLES OF SRAM PER CHANNEL, 2M SAMPLES TOTAL
- CHANNELS CAN BE READ AT ANY TIME PROVIDING:
 - SIGNAL MONITORING
 - OFFSET ADJUST AND TEST
 - GAIN TESTING
- READ OUT OF MODULE TYPE AND IT'S SERIAL NUMBER
- RECORDING MODES:
 - POST TRIGGER
 - MULTIPLE POST TRIGGER
 - PRE/POST TRIGGER
 - MULTIPLE PRE/POST TRIGGER
- GLOBAL COMMANDS FOR MULTIPLE MODULE OPERATION
- ALL TRIGGER ADDRESSES STORED
- REAL TIME TRIGGER ARRIVAL STORED
- TRIGGER COUNTER PROVIDED
- NUMBER OF EVENTS REGISTER
- INDIVIDUAL FILTERING OF EACH CHANNELS POWER AND GROUND
- HIGH NOISE IMMUNITY AND LOW CHANNEL CROSSTALK

Injection Transient

Gated camera single turn images (1/19/98)

Transverse Damping

Gated camera single turn images (1/19/98)

Streak Camera Image of Bunch Train Instability

